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Abstract. We discuss some properties of magnetostatic modes of a lateral superlattice (LSL)
consisting of a ferromagnetic film patterned into a series of parallel stripes. In contrast to earlier
work we assume that the applied magnetic field and static magnetization are transverse to the
stripes. The details of the results depend onf1, the fraction of the patterned film occupied by
magnetic material. We find a surface mode for all values off1, propagating in a wedge centred
about the Voigt direction. In a thick (semi-infinite) LSL the surface mode lies above the bulk
continuum and for an LSL of finite thickness the bulk continuum is replaced by a spectrum of
discrete guided modes.

1. Introduction

Among the magnetic low-dimensional structures that are the subject of extensive
investigation, lateral superlattices (LSLs) are attracting considerable interest. Fabrication
[1–4] is by lithographic patterning of a magnetic film to produce a structure of the kind
illustrated in figure 1. Although the experimental problems in producing high-quality
samples are considerable, it seems to us timely to try to develop a general theoretical
understanding of the possible excitation modes of LSLs. The various regimes that may
be found can be anticipated from experience with magnetic thin films and multilayers [5].
Potentially one of the most important sorts of excitation in a ferromagnetic LSL are pure
magnetostatic modes with Bloch wavevectorK satisfyingKD � 1 since these should
be accessible to Brillouin scattering [5]. When this inequality holds the LSL should be
described by the effective-medium approximation, which has been applied extensively in
far-infrared spectroscopy of semiconductor superlattices [6] and in magnetic superlattices
[7]. We have used this method for the magnetostatic modes on the surface of a thick
ferromagnetic LSL [8] and more recently for the magnetostatic surface-type and guided
modes of a ferromagnetic LSL of finite thickness [9]. Subsequently we dealt with an
antiferromagnetic LSL [10], also within the effective-medium approximation; in this case it
is necessary to include the effects of retardation because far-infrared spectroscopy, which
is the only established experimental technique [7, 11–13], probes the regionK ≈ ω/c. In
[8–10] we assumed that the magnetic field and the ordering direction were parallel to the
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LSL grooves, i.e. along theX axis in figure 1. One set of results is that in simple cases, the
ferromagnet and the antiferromagnet without applied field, the surface mode is found only
for magnetic fractionf1 = d1/D > 0.5. In the presence of a magnetic field the retarded
modes of the antiferromagnetic LSL change their character from real to virtual asf1 drops
through 0.5. Similar results were already known [14–16] for conventional superlattices.

Figure 1. A lateral magnetic superlattice. Magnetic lines of widthd1 are separated by non-
magnetic spacers of widthd2 so that the superlattice period isD = d1 + d2. The structure has
depthd. Axes are defined as shown and a static fieldH0 is applied normal to the layers, along
Z. We discuss propagation of surface and guided magnetostatic modes in the direction defined
by the angleθ .

In a subsequent paper [17] we considered a regime of larger wavenumbersK in which
exchange effects would become significant and the relevant excitations are dipole-exchange
modes, which in some cases are of importance in Brillouin scattering from ferromagnetic
films [5]. We discussed there the modes of an isolated rectangular magnetic wire which is
a simple model of one of the stripes in figure 1.

In the present paper we return to the purely dipolar modes described within the
effective-medium approximation. Camleyet al [18] have recently addressed the important
spectroscopic problem of extracting magnetic features from the spectra of metallic samples
in which there is usually a high background reflectivity. They were led to consider a LSL
in which the external field, the ordering direction and most importantly theE field of the
incident wave are perpendicular to the grooves. The effective conductivity in theE direction
is then small and according to their calculations the background reflectivity is reduced and
the magnetic features become visible. This work has drawn attention to geometries of this
kind and we think it worthwhile to carry out related calculations of magnetostatic or retarded
modes.

The configuration and axes to be used are defined in figure 1. We discuss the
magnetostatic modes of a ferromagnetic LSL withH0 and M0 along Z; we deal with
both a ‘thick’ (large-d) LSL and with the general case. As stated, we employ the effective-
medium approximation. The conditions for validity can be seen from the first discussions
of magnetic superlattices [19, 20] as well as from the earlier work on optical superlattices
[21, 22]. One requirement, as mentioned, is that the Bloch wavelength 2π/K in the Z
direction should be long compared to the periodD, and this is automatically satisfied for
magnetostatic modes. It is further necessary that the wavelength within each layer should
be large compared with the layer thicknessd1. This may be satisfied provided that the
magnetic boundary conditions at the interfaces are that the spins are unpinned. For pinned
spins the boundary condition on the rf magnetizationm is m = 0 [23] so that within each
layerm has a standing-wave profile and the condition of slow variation is not met. The
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assumption underlying this work is therefore that the boundary conditions correspond to
unpinned spins.

2. The permeability tensor

The permeability tensorµ(ω) within each ferromagnetic layer is given by the usual
expression [24] except that the demagnetization factor is unity and therefore the resonance
frequency is

ωi = γHi = γ (H0− 4πM0) = ω0− ωm (1)

in conventional notation. Thus

µ(ω) =
(

µ iµ⊥ 0
−iµ⊥ µ 0

0 0 1

)
(2)

with

µ = 1+ ωmωi/(ω2
i − ω2) (3)

µ⊥ = ωmω/(ω2
i − ω2). (4)

The appearance of the internal fieldHi in (1) means that the properties of the modes that
we shall discuss are different from those of a continuous film even for small non-magnetic
fraction f2. With H0 parallel to the layers we find [8] that asf 2→ 0 the standard results
for the Damon–Eshbach modes are recovered. In the present case, however, the existence of
non-magnetic gaps, however small, means that the resonance frequency is always determined
by Hi rather thanH0.

The effective-medium permeabilityµeff (ω) may be derived by the usual field-continuity
method [19, 21], which in the present case means continuity ofhx andhy at the interfaces.
We find

µeff (ω) =
(
µxx iµxy 0
−iµxy µyy 0

0 0 1

)
(5)

with

µxx = µyy = f1µ+ f2 (6)

µxy = f1µ⊥ (7)

wherefi = di/D so thatf1 andf2 are the fractions of magnetic and non-magnetic material.

3. The surface magnetostatic mode on a thick LSL

We consider first the case of larged so that the LSL is treated as semi-infinite. The
derivation of the surface-mode dispersion relation is standard [24] and we review it only
briefly. Since∇ × h = 0 we introduce a scalar potentialψ so thath = ∇ψ and for the
propagation direction shown in figure 1 we take

ψ = A0 exp(ik · r − α0y) exp(−iωt) y > 0 (8)

ψ = A1 exp(ik · r + αy) exp(−iωt) y < 0. (9)

Herek andr are two-dimensional vectors in theX–Z plane. The relationsb = µeffh and
∇ · b = 0 lead to

a2
0 = k2 (10)
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and

µxx(k
2
x − α2)+ k2

z = 0. (11)

The boundary conditionsψ andby continuous aty = 0 lead to two relations betweenA0

andA1 and consistency between these gives the dispersion relation in the implicit form

α0+ µxykx + µxxα = 0 (12)

which with use of (10) and (11) may be reduced to

(1+ µxy sin θ)2 = µxx(µxx sin2 θ + cos2 θ). (13)

With use of (3), (4), (6) and (7) we can finally write (13) in the explicit form

ω = [ω0− ωm + sin2 θ(ω0− f2ωm)]/2 sin θ. (14)

For the solution of (12), (13) or (14) to represent a surface mode the additional conditions
α > 0 andα0 > 0 must be satisfied.

We find that like other surface magnetostatic waves these modes propagate only in a
range of anglesθc < θ < π − θc centred on the positiveX axis. At the critical angleα = 0
(infinite penetration depth), so as seen from (10) and (12) 1+µxy sinθc = 0 and it follows
from (13) that

µxx(µxx sin2 θc + cos2 θc) = 0. (15)

The second factor in (15) does not vanish for any real value ofθ . Fromµxx = 0 it follows
that the mode frequencyωc for θ = θc is given by

ω2
c = (ω0− ωm)2+ f1ωm(ω0− ωm) (16)

and substitution in (14) then gives

sin2 θc = (ω0− ωm)/(ω0− f2ωm). (17)

This equation has some rather surprising properties. First, forω0 > ωm there is a solution
for θc and therefore a surface mode is found for all values off2 but only in a restricted
wedge of angles of propagation. Forω0 < ωm on the other hand (17) has no solution
for real θc for any value off2. Thus there is no magnetostatic mode for any angle of
propagation forω0 < ωm. As seen from (1) the conditionω0 > ωm means that the external
field H0 is sufficiently large that the internal fieldHi within each magnetic layer is in the
same direction asH0.

As mentioned, the fact that a mode exists for all values off2 = 1− f1 is unusual.
For the LSL withH0 parallel to the layers we found [8] that the surface mode exists only
for f1 > 0.5, that is, when the magnetic fraction is larger than the non-magnetic fraction.
This is similar to the well known result [14, 15] that there is no magnetostatic mode on a
conventional magnetic superlattice forf1 < 0.5. The dependence ofθc on f2 is illustrated
in figure 2.

The results of this section are illustrated further in figure 3, where we show examples
of the variation of mode frequencyω with angleθ for two values off1 andH0 = 7.032 kG
(ω0/ωm = 1.166) for a Ni–non-magnet LSL. On these graphs we show also the bulk-mode
continuum. The boundary curves of this are found from (11) first by putting aα = 0 (bulk
mode propagating parallel to surface) and second by puttingkx = kz = 0 andα = iky
(bulk mode propagating normal to surface). The first operation gives for the lower limiting
frequency

ω = ωl = [(ω0− ωm)2+ f1 sin2 θ ωm(ω0− ωm)]1/2 (18)
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Figure 2. Dependence of critical angleθc on non-magnetic fractionf2 for ω0/ωm = 2.0
(curve a) andω0/ωm = 1.2 (curve b).

and the second gives the upper limiting frequency asω = ωc, whereωc was previously
defined in (16) as the surface-mode frequency at the critical angleθc. Thus (16) implies
that at the critical angle the surface mode merges with the top of the bulk continuum as
indeed is seen in figure 3.

Figure 3. Surface-mode frequency versusθ for a magnet–non-magnet LSL in external field
H0 = 7.032 kG and magnetic fractionf1 equal to (a) 0.8 and (b) 0.4. The magnetic material
is Ni with 4πM0 = 6.032 kG. The surface mode is denoted by SM and the bulk continuum
defined by (18) and (19) is shown shaded.
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4. General thickness: surface and guided modes

We now turn to the case where the depthd in figure 1 has a general value. The potential
now takes the form

ψ = A0 exp(ik · r − α0y) exp(−iωt) y > 0 (19)

ψ = exp(ik · r)[a exp(αy)+ b exp(−αy)] exp(−iωt) 0> y > −d (20)

ψ = A1 exp(ik · r + α0y) exp(−iωt) y < −d. (21)

Formally,α0 andα are still given by (10) and (11) but nowα can take imaginary values,
corresponding to guided modes, as well as real values, corresponding to modified surface
modes. The calculation now follows the standard form [24]. The boundary conditions of
constantψ andby at y = 0 and−d give four homogeneous equations in the four amplitudes
A0, a, b andA1 and the condition for consistency gives the dispersion equation. This is

(α2
0 − µ2

xyk
2
x + µ2

xxα
2) tanh(αd)+ 2α0αµxx = 0 (22)

and with use of (10) and (11) this may be written

[1+ (µ2
xx − µ2

xy) sin2 θ + µxx cos2 θ ] tanh(3kd)+ 23µxx = 0 (23)

where we have definedα = 3k so that

3 = [(µxx sin2 θ + cos2 θ)/µxx ]1/2. (24)

For realα (23) describes how the surface modes of the previous section are modified by
the presence of a second surface. It applies also for imaginaryα in which case it describes
how the bulk continuum is broken up into a discrete guided-wave spectrum in the film of
finite depth. It is convenient to write the guided-wave dispersion equation in the explicit
form

[1− (µ2
xx + µ2

xy) sin2 θ − µxx cos2 θ ] tan(λkd)+ 2λµxx = 0 (25)

whereλ2 = −32 with 3 defined in (24).
Since the surface-type and guided modes occur in the regionsα2 > 0 andα2 < 0

respectively the limiting frequencies are the same as those found in the previous section.
That is, surface modes occur forω > ωc and guided modes forωl < ω < ωc with ωl
andωc given by (18) and (16) respectively. The critical angleθc remains of relevance to
the surface-type modes. Now, however, non-reciprocity takes the form of non-reciprocal
localization of the mode functions. In a wedge about the positiveX axis defined byθc
there is a surface-type mode withψ taking large values near the upper surface and small
values near the lower surface. A mode is also found in the corresponding wedge about the
negativeX axis but with localization at the lower surface. This form of non-reciprocity is
fully discussed in the standard review [25] on the subject.

Some numerical illustrations for finite depthd are given in figures 4 and 5. As in
figure 3, we take the magnetic material as Ni, 4πM0 = 6.032 kG and we now take the
single external-field valueH0 = 7.032 kG corresponding toω0/ωm = 1.166. It follows from
(22) that for givenH0 and magnetic fractionf1 the surface and guided wave frequencies are
functions of the direction of propagationθ and the combined wavenumber–depth variable
kd. In figure 4 we plot the frequencies as functions ofθ with kd as parameter. Comparison
of figure 4(a) and (b) and of 4(c) and (d) shows the effect of reducing the magnetic fraction
f1 from 0.8 to 0.4. With a decrease inf1 the critical angleθc increases so the surface
mode occupies a smaller wedge about theX axis. We recall, however, that the existence
of a surface mode for any value at all ofθ is somewhat surprising forf1 < 0.5. The other
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Figure 4. Surface- and guided-mode frequencies versus direction of propagationθ for an LSL
of finite depthd. The magnetic material is Ni, 4πM0 = 6.032 kG and we take external field
H0 = 7.032 kG. (a)kd = 1, magnetic fractionf1 = 0.8; (b) kd = 1, f1 = 0.4; (c) kd = 5,
f1 = 0.8; (d) kd = 5, f1 = 0.4. On each graph we show by an arrow on theθ axis the critical
angleθc given by (17) and we plot as dashed lines the lower and upper boundsωl andωc of
the guided-wave region. These are given by (18) and (16) respectively.

obvious effect of a decrease inf1 is that all frequencies decrease, as might be expected
when the volume fraction of magnetic material is made smaller. The other comparison,
of 4(a) with (c) and of 4(b) with (d), shows the effect of increasing thicknessd at fixed
magnetic fractionf1. If d is not too small the surface mode may be regarded as that on
the semi-infinite medium perturbed by the boundary condition due to the second surface at
y = −d. As d increases this perturbation becomes smaller and the surface-mode dispersion
curves in figure 4(c) and (d) are closer to those of the semi-infinite LSL (figure 3) than
those of figure 4(a) and (b). Formally, the tanh function in (22) or (23) is approaching
unity. The other consequence of increasingd is that the intervals between guided-mode
dispersion curves become smaller, as is to be expected since they are determined by a
standing-wave-type condition.
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Figure 5. Surface- and guided-mode frequencies versuskd for various θ and f1. Magnetic
parameters as in figure 4. (a)θ = 80◦, f1 = 0.8; (b) θ = 80◦, f1 = 0.4; (c) θ = 40◦, f1 = 0.8;
(d) θ = 40◦, f1 = 0.4. As in figure 4 the lower and upper boundsθl andθc of the guided-wave
region are shown by dashed lines, except for (d) whereωl = 1.413 below the scale.

As an alternative, we show in figure 5 mode frequencies versuskd with θ as a parameter.
On all the graphs the increase of the surface-mode frequency toward the asymptotic value
given by (14) is clear. All four graphs show also a general decrease in the guided-mode
frequencies with increasingkd despite the fact that as seen from (16) and (18) and as shown
in figure 5(a)–(d) the upper and lower bounding frequenciesθc andθl of the guided-mode
region are independent ofkd. Comparison of figure 5(a) with (b) and of (c) with (d) shows
a general decrease in frequencies and compression of the frequency scales as the magnetic
fraction f1 decreases. Comparison of figure 5(a) with (c) and of 5(b) with (d) shows the
effect of decreasingθ , i.e. moving the direction of propagation away from theX axis, for
givenf1. The frequency range occupied by the surface mode decreases while that occupied
by the guided waves increases.
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5. Discussion

Our main results are illustrated in figure 3 for the thick (semi-infinite) LSL and in figures 4
and 5 for the LSL of finite thickness. Qualitatively these have similar properties to
the magnetostatic modes of unpatterned films [26]. The surface mode is non-reciprocal,
propagating in a wedge of angleπ/2− θc about the Voigt direction. In figure 3 the surface
mode lies above the bulk continuum and in figures 4 and 5 the continuum is replaced by
a discrete spectrum of guided modes. The details here depend on the magnetic fractionf1

and figure 2, for example, shows howθc depends onf2 = 1−f1. One significant difference
from most previous work on magnetic superlattices is that we find a surface mode for all
values off1, whereas in many cases [14–16] the conditionf1 > 0.5 is necessary. Another
important difference from the earlier work is that there is no simple limit asf1 → 1
since for any value off1 there is a demagnetizing field ensuring that the resonance field is
ωi = ω0− ωm, as in (1).

In a magnetostatic mode there is no coupling to the electric field and the present results
therefore apply equally to conducting and insulating materials. Clearly it would be of
interest to investigate the properties of the retarded (polariton) modes of metallic LSLs in
the geometry considered here since the properties of these modes do depend on theE field.
For general direction of propagationθ the conductivity may be expected to lead to heavy
damping of the polaritons. By analogy with the results of Camleyet al (18), however, the
Voigt directionθ = π/2 may be exceptional since this corresponds to the polaritonE field
lying precisely transverse to the LSL grooves and in this direction the effective conductivity
is very small. Thus rapid variation of damping asθ varies around the Voigt direction may
be expected.
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